您的位置 首页 发烧友原创

一文详解半导体的检验方法

一文详解半导体的检验方法-在开始生产之前,裸晶圆在晶圆制造商处要检验合格合格,并在半导体工厂接收后再次要检验合格。只有最无缺陷的晶圆才用于生产,它们的生产前缺陷图允许制造商跟踪可能导致芯片功能不佳的区域。裸晶片或非图案化晶片也在经受被动或主动处理环境之前和之后被测量,以确定来自给定处理工具的粒子贡献的基线。

缺陷扫描检查

在开始生产之前,裸晶圆在晶圆制造商处要检验合格合格,并在半导体工厂接收后再次要检验合格。只有最无缺陷的晶圆才用于生产,它们的生产前缺陷图允许制造商跟踪可能导致芯片功能不佳的区域。裸晶片或非图案化晶片也在经受被动或主动处理环境之前和之后被测量,以确定来自给定处理工具的粒子贡献的基线。

一文详解半导体的检验方法

一文详解半导体的检验方法

100纳米以下的检测工具目前被用于制造环境中,以保证进入晶圆的质量,并用于大批量制造的工艺工具监控和鉴定。这些工具采用与设计用于大规模缺陷检测的工具相同的基本操作原理,但使用DUV照明增强光学系统。一些制造商声称复杂的图像分析算法可以达到20纳米以下的灵敏度。正如所料,在这些应用中使用的系统中,晶片台和光学部件的运动控制需要高度的精度和准确度。

由于需要检测工具来检测和量化越来越小的颗粒,由于散射光信号的信噪比降低,表面微粗糙度(雾度)等因素的影响开始影响小颗粒的可检测性。非图案化晶片的亚100纳米检测由于尺度问题而变得复杂,信噪比是确定检测系统对晶片表面颗粒和其他缺陷的检测极限的关键参数。来自环境湿度等来源的表面化学污染也会导致信噪比下降。为了帮助抵消这种影响,用于亚100纳米缺陷检测的检测工具采用高度复杂的光学空间滤波、散射信号的偏振分析和专门的信号处理算法来检测存在表面雾度的缺陷。

形貌检查

测量裸晶片形貌有许多原因。例如,晶片可能弯曲,或者支撑晶片的卡盘(静电或气动)可能在晶片的接触点产生凹痕。这种变形会影响纳米尺度的图案成像。已经开发出非常精确的干涉测量工具来测量加工前晶片形状的这种变化。

用于测量裸晶圆表面形貌的基本设计类似于图3所示的斐索干涉仪。这种干涉测量技术将晶片与非常高质量和平整度的参考楔(或参考平面)进行比较。楔角确保来自平面的第一表面的反射不会对干涉信号产生影响。从第二表面反射的光用作参考,同时一部分光穿过平板以询问晶片(测试平板)。从晶片和测试平台反射的光被分束器导向成像系统。分析干涉图案,并使用软件将测量结果拼接在一起,以形成具有纳米尺度分辨率的完整晶片图。实际上,测量裸晶片形貌的干涉测量工具极其复杂,并且利用运动解决方案、大型光学器件和照明源来帮助扩展可制造性设计的边界。

一文详解半导体的检验方法

一文详解半导体的检验方法

亚100纳米特征的DUV晶圆检测

亚100纳米图案化晶片的缺陷检测比非图案化晶片检测面临更大的挑战。用于图案化晶片应用的基于DUV的光学检测使用与旧的可见光和紫外光检测系统相同的图像比较原理。然而,基于DUV的方法在光学、运动控制和图像分析算法方面需要更高的复杂程度。

DUV检测工具已成为图案化晶圆检测的行业标准,其特征尺寸可达65纳米;高达每小时几个晶片的检查速率使得这些系统适合于生产应用。DUV检测工具显示出对缺陷检测的高灵敏度,例如浅沟槽隔离空隙、接触蚀刻缺陷和亚100纳米几何形状的光刻胶微桥接。使用宽带DUV/紫外/可见照明,现代明场图案化晶圆检测系统目前可实现对动态随机存取存储器和闪存器件上所有层缺陷检测所需的灵敏度,最低可达55纳米特征尺寸。

虽然众所周知的特性加上相对较低的成本和较高的吞吐量使得DUV光学检测系统的持续使用具有吸引力,但一些制造商报告称,DUV检测系统不具备65纳米以下几何形状所需的精度和灵敏度。一项研究声称,DUV暗场光学图案检测系统的极限缺陷灵敏度在存储技术(例如静态随机存取存储器)中约为75纳米,在逻辑区域中更大。DUV明场系统的极限灵敏度稍高,静态随机存取存储器约为50纳米,暗场系统的极限灵敏度则更高。此外,使用DUV激光照射图案化晶片上非常小且因此易碎的结构产生了一些不寻常的问题,例如表面材料的激光烧蚀。这些问题的解决方案可能在于将宽带等离子体照明用于光学检查系统(现有的DUV系统采用266纳米波长,并且正在转向193纳米照明)或者使用能够生产的电子束检查工具。最近推出的基于等离子体产生的宽带照明的检测工具可用于生产环境。声称这些系统的分辨率低于10纳米,因为在这种较小的尺度下,较短的波长提供了更精确的检查。

电子束晶圆检测

电子束成像也用于缺陷检查,尤其是在光学成像效率较低的较小几何形状上。电子束检查可以提供比光学检查系统分辨率动态范围大得多的材料对比度。然而,电子束应用受到测量速度慢的限制,这使得它主要用于R&D环境和新技术鉴定的工艺开发。新的电子束工具可用于10纳米及以下节点的缺陷检测应用,多电子束工具正在开发中,具有多达100个柱或测量通道。

标线检查

掩模版是用精细特征图案化的透射或反射投影掩模,通常比晶片上期望的图案尺寸大4-5倍。它们与光学照明系统一起使用,作为晶片图案化过程的一部分,光学照明系统对图案化的光进行成像和去放大,以选择性地显影光致抗蚀剂。

可以说,掩模版检查远比无图案或有图案的晶片检查更重要。这是因为,虽然裸晶片或图案化晶片上的单个缺陷有可能“杀死”一个器件,但是掩模版上的单个未检测到的缺陷会破坏成千上万个器件,因为缺陷会在使用该掩模版处理的每个晶片上复制。对于EUV来说,这个问题由于图案的更精细的分辨率、薄保护膜的存在以及分划板的反射设计而变得更加复杂。

除了通常使用透射光而不是反射光来检查掩模版之外,掩模版检查系统的工作原理与晶片检查工具相同,并且具有相似的物理要求。透射光用于定位紫外线不透明污渍和其他透射缺陷。掩模版检查工具根据缺陷容差和/或特征尺寸,采用高分辨率成像光学器件和可见光或紫外光照明,以发现掩模版坯料或图案化掩模版上的缺陷。在掩模版制造过程中和整个掩模版使用过程中,例行检查。标线检查工具采用了类似于晶片检查工具中使用的复杂图像分析软件和运动控制系统。通过使用紫外线照明,传统光学器件在标线检查系统中的使用已经扩展到90纳米的特征尺寸。使用电子束可以在较小的特征尺寸下进行掩模版检查,因为与图案化晶片检查相比,可以容许较低的生产量。与晶片检测一样,亚100纳米应用中使用的掩模版检测工具(空白和图案化掩模版检测)采用DUV照明,通常使用266纳米或193纳米的单一波长。

  审核编辑:汤梓红

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

为您推荐

反射内存卡编程的三个寄存器组

反射内存卡编程的三个寄存器组

反射内存卡编程的三个寄存器组-反射内存卡编程

基本 RFM5565 反射内存写入和读取操作需要很少或根本不需要编程知识。反射内存板上电后进入功能模式。用户将需要访问 PCI配置寄存器(基址寄存器 0,1,2 和 3)获取系统 BIOS 分配寄存器组和反射内存的基址。反射内存的寄存器组的基址和内存地址可以比较随意,。对于超出了基本的设置,如启用或禁用中断或 DMA 周期的操作,用户必须知道三个寄存器组内具体寄存器分配,本章提供的这些信息。

制导系统测试发挥着越来越重要的作用

制导系统测试发挥着越来越重要的作用

制导系统测试发挥着越来越重要的作用-制导系统的测试要求保证最高级别的可靠性,以达到差错归零的要求。NI 提供的解决方案,从模块化硬件的隔离设计、PXI 平台的电气结构特性、实时操作系统、稳定的驱动和开发软件等多个方面,保证了测试系统可以在7/24 工作条件下满足高可靠性的要求

同步通信和异步通信有什么区别

同步通信和异步通信有什么区别-个人认为即便再过几十年,目前市面上还能看到很多51内核的单片机,作为最基础的型号,它是没有那么快被淘汰的,所以大学教材都还应该坚持51的课程,因为51这个课程可以完整清晰地讲明白单片机的基础内部工作原理,大家可以回过头去看看计算机原理这本书,看完之后不知道如何搭建一个CPU,学过模拟电路,数字电路等其它电学课程也都做不能做出一个处理器,但是唯独学了51这个基础课程就可以尝试用电路去搭建一个简单的单片机,所以我认为51单片机是大学电学课程里面为数不多的精品课程,在读学生一定是不能抛弃的。

限流式保护器在防范电动自行车火灾等低压电气火灾中的应用

限流式保护器在防范电动自行车火灾等低压电气火灾中的应用-前言        众所周知,电动自行车是以轮毂电机、电机控制器、金属车架等部件为主要结构,以动力电池为行动能源,以多元化低压电气系统为控制手段。其以轻便快捷、价格便宜、绿色环保、通行性高、停车不设限等先天优势,在我国的城乡迅速普及,成为广大群众出行的主要代步工具。与此同时,电动自行车引发的火灾事故不断上升,亡人伤人风险与日俱增。防范电动自行车火灾是当前消防安全管理的重要内容之一。本文从电动自行车构成部分低

智慧消防应用中多设备联动火灾报警系统

智慧消防应用中多设备联动火灾报警系统-1 概述   进入新时期后,信息化手段正在全方面渗透于智能城市的全方面建设中,而与之有关的消防系统也具备了智能化的显著特征。然而不应当忽视,当前多数消防系统仍然设置为独立式的,针对各种类型的消防报警设施也是单独安装并且单独购置的。在此种状态下,消防系统存在较大可能将会表现为错误报告的现象,以至于延误了珍贵的救灾时间。与之相比,具备联动特征的火灾报警模式更加有助于杜绝误报火情的现象,这是因为其配置了联动性的

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部