您的位置 首页 电子技术

通信协议常见内容有哪些

通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

有一些初学者总觉得通信协议是一个很复杂的知识,把它想的很高深,导致不知道该怎么学。

同时,偶尔有读者问关于串口自定义通信协议相关的问题,今天就来写写串口通信协议,并不是你想想中的那么难?1什么通信协议?通信协议不难理解,就是两个(或多个)设备之间进行通信,必须要遵循的一种协议。百度百科的解释:

通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。

相应该有很多读者都买过一些基于串口通信的模块,市面上很多基于串口通信的模块都是自定义通信协议,有的比较简单,有的相对复杂一点。举一个很简单的串口通信协议的例子:比如只传输一个温度值,只有三个字节的通信协议:

帧头 温度值 帧尾

5A一字节数值3B这种看起来是不是很简单?它也是一种通信协议。只是说这种通信协议应用的场合相对比较简单(一对一两个设备之间),同时,它存在很多弊端。2过于简单的通信协议引发的问题上面那种只有三个字节的通信协议,相信大家都看明白了。虽然它也能通信,也能传输数据,但它存在一系列的问题。比如:多个设备连接在一条总线(比如485)上,怎么判断传输给谁?(没有设备信息)还比如:处于一个干扰环境,你能保障传输数据正确吗?(没有校验信息)再比如:我想传输多个不确定长度的数据,该怎么办?(没有长度信息)。上面这一系列问题,相信做过自定义通信的朋友都了解。所以,在通信协议里面要约定更多的“协议信息”,这样才能保证通信的完整。3通信协议常见内容基于串口的通信协议通常不能太复杂,因为串口通信速率、抗干扰能力以及其他各方面原因,相对于TCP/IP这种通信协议,是一种很轻量级的通信协议。所以,基于串口的通信,除了一些通用的通信协议(比如:Modubs、MAVLink)之外,很多时候,工程师都会根据自己项目情况,自定义通信协议。下面简单描述下常见自定义通信协议的一些要点内容。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062912-62299ab8cfeca.png

(这是一些常见的协议内容,可能不同情况,其协议内容不同)1.帧头帧头,就是一帧通信数据的开头。有的通信协议帧头只有一个,有的有两个,比如:5A、A5作为帧头。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062913-62299ab9e1a67.png

2.设备地址/类型设备地址或者设备类型,通常是用于多种设备之间,为了方便区分不同设备。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062914-62299abac3db2.png

这种情况,需要在协议或者附录中要描述各种设备类型信息,方便开发者编码查询。当然,有些固定的两种设备之间通信,可能没有这个选项。3.命令/指令命令/指令比较常见,一般是不同的操作,用不同的命令来区分。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062915-62299abbaa34d.png

举例:温度:0x01;湿度:0x02;4.命令类型/功能码这个选项对命令进一步补充。比如:读、写操作。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062916-62299abc98a81.png

举例:读Flash:0x01;写Flash:0x02;5.数据长度数据长度这个选项,可能有的协议会把该选项提到前面设备地址位置,把命令这些信息算在“长度”里面。这个主要是方便协议(接收)解析的时候,统计接收数据长度。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062917-62299abd832fa.png

比如:有时候传输一个有效数据,有时候要传输多个有效数据,甚至传输一个数组的数据。这个时候,传输的一帧数据就是不定长数据,就必须要有【数据长度】来约束。有的长度是一个字节,其范围:0x01 ~ 0xFF,有的可能要求一次性传输更多,就用两个字节表示,其范围0x0001 ~0xFFFFF。当然,有的通信长度是固定的长度(比如固定只传输、温度、湿度这两个数据),其协议可能没有这个选项。6.数据数据就不用描述了,就是你传输的实实在在的数据,比如温度:25℃。7.帧尾有些协议可能没有帧尾,这个应该是可有可无的一个选项。8.校验码校验码是一个比较重要的内容,一般正规一点的通信协议都有这个选项,原因很简单,通信很容易受到干扰,或者其他原因,导致传输数据出错。如果有校验码,就能比较有效避免数据传输出错的的情况。

http://news.vvfanli.com/wp-content/uploads/2022/03/20220310062918-62299abeb7484.png

校验码的方式有很多,校验和、CRC校验算是比较常见的,用于自定义协议中的校验方式。还有一点,有的协议可能把校验码放在倒数第二,帧尾放在最后位置。4通信协议代码实现自定义通信协议,代码实现的方式有很多种,怎么说呢,“条条大路通罗马”你只需要按照你协议要写实现代码就行。当然,实现的同时,需要考虑你项目实际情况,比如通信数据比较多,要用消息队列(FIFO),还比如,如果协议复杂,最好封装结构体等。下面分享一些以前用到的代码,可能没有描述更多细节,但一些思想可以借鉴。1.消息数据发送a.通过串口直接发送每一个字节这种对于新手来说都能理解,这里分享一个之前DGUS串口屏的例子:

#define DGUS_FRAME_HEAD1          0xA5                     //DGUS屏帧头1#define DGUS_FRAME_HEAD2          0x5A                     //DGUS屏帧头2#define DGUS_CMD_W_REG            0x80                     //DGUS写寄存器指令#define DGUS_CMD_R_REG            0x81                     //DGUS读寄存器指令#define DGUS_CMD_W_DATA           0x82                     //DGUS写数据指令#define DGUS_CMD_R_DATA           0x83                     //DGUS读数据指令#define DGUS_CMD_W_CURVE          0x85                     //DGUS写曲线指令/* DGUS寄存器地址 */#define DGUS_REG_VERSION          0x00                     //DGUS版本#define DGUS_REG_LED_NOW          0x01                     //LED背光亮度#define DGUS_REG_BZ_TIME          0x02                     //蜂鸣器时长#define DGUS_REG_PIC_ID           0x03                     //显示页面ID#define DGUS_REG_TP_FLAG          0x05                     //触摸坐标更新标志#define DGUS_REG_TP_STATUS        0x06                     //坐标状态#define DGUS_REG_TP_POSITION      0x07                     //坐标位置#define DGUS_REG_TPC_ENABLE       0x0B                     //触控使能#define DGUS_REG_RTC_NOW          0x20                     //当前RTCS//往DGDS屏指定寄存器写一字节数据void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data){  DGUS_SendByte(DGUS_FRAME_HEAD1);  DGUS_SendByte(DGUS_FRAME_HEAD2);  DGUS_SendByte(0x04);  DGUS_SendByte(DGUS_CMD_W_REG);                 //指令  DGUS_SendByte(RegAddr);                        //地址  DGUS_SendByte((uint8_t)(Data>>8));             //数据  DGUS_SendByte((uint8_t)(Data&0xFF));}//往DGDS屏指定地址写一字节数据void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data){  DGUS_SendByte(DGUS_FRAME_HEAD1);  DGUS_SendByte(DGUS_FRAME_HEAD2);  DGUS_SendByte(0x05);  DGUS_SendByte(DGUS_CMD_W_DATA);                //指令  DGUS_SendByte((uint8_t)(DataAddr>>8));         //地址  DGUS_SendByte((uint8_t)(DataAddr&0xFF));  DGUS_SendByte((uint8_t)(Data>>8));             //数据  DGUS_SendByte((uint8_t)(Data&0xFF));}

b.通过消息队列发送在上面基础上,用一个buf装下消息,然后“打包”到消息队列,通过消息队列的方式(FIFO)发送出去。

static uint8_t  sDGUS_SendBuf[DGUS_PACKAGE_LEN];//往DGDS屏指定寄存器写一字节数据void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data){  sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头  sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2;  sDGUS_SendBuf[2] = 0x06;                       //长度  sDGUS_SendBuf[3] = DGUS_CMD_W_CTRL;            //指令  sDGUS_SendBuf[4] = RegAddr;                    //地址  sDGUS_SendBuf[5] = (uint8_t)(Data>>8);         //数据  sDGUS_SendBuf[6] = (uint8_t)(Data&0xFF);  DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L);  sDGUS_SendBuf[7] = sDGUS_CRC_H;                //校验  sDGUS_SendBuf[8] = sDGUS_CRC_L;  DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);}//往DGDS屏指定地址写一字节数据void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data){  sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头  sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2;  sDGUS_SendBuf[2] = 0x07;                       //长度  sDGUS_SendBuf[3] = DGUS_CMD_W_DATA;            //指令  sDGUS_SendBuf[4] = (uint8_t)(DataAddr>>8);     //地址  sDGUS_SendBuf[5] = (uint8_t)(DataAddr&0xFF);  sDGUS_SendBuf[6] = (uint8_t)(Data>>8);         //数据  sDGUS_SendBuf[7] = (uint8_t)(Data&0xFF);  DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L);  sDGUS_SendBuf[8] = sDGUS_CRC_H;                //校验  sDGUS_SendBuf[9] = sDGUS_CRC_L;  DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);}

c.用“结构体”代替“数组SendBuf”方式结构体对数组更方便引用,也方便管理,所以,结构体方式相比数组buf更高级,也更实用。(当然,如果成员比较多,如果用临时变量方式也会导致占用过多堆栈的情况)比如:

typedef struct{  uint8_t  Head1;                 //帧头1  uint8_t  Head2;                 //帧头2  uint8_t  Len;                   //长度  uint8_t  Cmd;                   //命令  uint8_t  Data[DGUS_DATA_LEN];   //数据  uint16_t CRC16;                 //CRC校验}DGUS_PACKAGE_TypeDef;

d.其他更多串口发送数据的方式有很多,比如用DMA的方式替代消息队列的方式。2.消息数据接收串口消息接收,通常串口中断接收的方式居多,当然,也有很少情况用轮询的方式接收数据。a.常规中断接收还是以DGUS串口屏为例,描述一种简单又常见的中断接收方式:

void DGUS_ISRHandler(uint8_t Data){  static uint8_t sDgus_RxNum = 0;                //数量  static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN];  static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;  sDgus_RxBuf[gDGUS_RxCnt] = Data;  gDGUS_RxCnt++;  /* 判断帧头 */  if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1  {    gDGUS_RxCnt = 0;    return;  }  if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2))  {    gDGUS_RxCnt = 0;    return;  }  /* 确定一帧数据长度 */  if(gDGUS_RxCnt == 3)  {    sDgus_RxNum = sDgus_RxBuf[2] + 3;  }  /* 接收完一帧数据 */  if((6 <= gDGUS_RxCnt) && (sDgus_RxNum <= gDGUS_RxCnt))  {    gDGUS_RxCnt = 0;    if(xDGUSRcvQueue != NULL)                    //解析成功, 加入队列    {      xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken);      portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);    }  }}

b.增加超时检测

接收数据有可能存在接收了一半,中断因为某种原因中断了,这时候,超时检测也很有必要。

比如:用多余的MCU定时器做一个超时计数的处理,接收到一个数据,开始计时,超过1ms没有接收到下一个数据,就丢掉这一包(前面接收的)数据。

static void DGUS_TimingAndUpdate(uint16_t Nms){  sDGUSTiming_Nms_Num = Nms;  TIM_SetCounter(DGUS_TIM, 0);                   //设置计数值为0  TIM_Cmd(DGUS_TIM, ENABLE);                     //启动定时器}void DGUS_COM_IRQHandler(void){  if((DGUS_COM->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE)  {    DGUS_TimingAndUpdate(5);                     //更新定时(防止超时)    DGUS_ISRHandler((uint8_t)USART_ReceiveData(DGUS_COM));  }}

c.更多

接收和发送一样,实现方法有很多种,比如接收同样也可以用结构体方式。但有一点,都需要结合你实际需求来编码。

5最后以上自定义协议内容仅供参考,最终用哪些、占用几个字节都与你实际需求有关。基于串口的自定义通信协议,有千差万别,比如:MCU处理能力、设备多少、通信内容等都与你自定义协议有关。有的可能只需要很简单的通信协议就能满足要求。有的可能需要更复杂的协议才能满足。最后强调两点:1.以上举例并不是完整的代码(有些细节没有描述出来),主要是供大家学习这种编程思想,或者实现方式。2.一份好的通信协议代码,必定有一定容错处理,比如:发送完成检测、接收超时检测、数据出错检测等等。所以说,以上代码并不是完整的代码。

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: admin

为您推荐

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦-夜间的路灯不仅照亮了黑暗的街道,而且照亮了回家的道路。从街上望去,闪烁的路灯发出暖光,指引着我们家的方向。城市里的路灯就像“守护者”,给长途旅行回来的游客带来了极大的安全感。 当今,路灯智能控制时代的到来,极大地促进了传统路灯的人工机械化运行。虽然对此感到兴奋,但我们不禁要问:随着路灯智能控制的早期到来,除了改善路灯的运行模式,还能带来什么? 为城市交通提供安全保障 城市公共照明系统中的智能路灯在每个路

晶振在五种不同行业中的应用说明

晶振在五种不同行业中的应用说明-晶振在五种不同行业的应用-由TST嘉硕代理KOYU光与电子

几种不同的物联网控制APP模式

本文就简单介绍当前几种物联网控制APP模式,让大家了解几种不同的技术路线。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

苹果稳坐全球可穿戴设备数量首位,占据日本市场超7成份额

苹果稳坐全球可穿戴设备数量首位,占据日本市场超7成份额

苹果公司占据2021年日本第四季度可穿戴设备71.5%份额,占据全球可穿戴设备市场34.9%份额。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

如何用GPUDirect存储器如何缓解CPU I / O瓶颈

除了使用 GPUs 而不是 CPU 加快计算的好处外,一旦整个数据处理管道转移到 GPU 执行,直接存储就起到了一个力倍增器的作用。这一点变得尤为重要,因为数据集大小不再适合系统内存,而且 GPUs 的数据 I / O 增长成为处理时间的瓶颈。当人工智能和数据科学继续重新定义可能的艺术时,启用直接路径可以减少甚至完全缓解这个瓶颈。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注