您的位置 首页 电子技术

如何使用GPU编程优化模型/代码

  使用 Python 和 NumPy 库开发的 HIM 模型在 hackathon 开始时没有并行或 GPU 计算。在活动期间, THINKLAB 团队使用 CuPy 为了使他们的代码在 GPU 上并行运行,然后重点将用户定义的 CUDA 内核应用于参数。结果是 672 倍加速,计算时间从 2 周缩短到大约 30 分钟。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

虽然世界在不断变化,但开发人员仍在不断推动他们使用创新技术应对挑战。最近的台湾计算云( TWCC ) GPU Hackathon 就是这样一个例子,它是开发者和工程师使用 GPU 推进 HPC 和 AI 项目的催化剂。

国家高性能计算中心 、 台湾网络服务公司 、 NVIDIA 和 OpenACC 、 12 个团队和 15 名 NVIDIA 导师之间的合作,使用了从人工智能驱动的制造调度模型到快速洪水预测模型的各种方法来加速项目。

利用人工智能优化生产效率

智能制造的关键领域之一是优化和自动化生产线流程。团队 AI 调度员和 工业技术研究中心(工研院) 的 计算智能技术中心( CITC ) 成员来到 hackathon ,使用机器学习开发他们的制造调度模型。

传统的调度模型大多采用启发式规则,能够即时响应动态事件。然而,他们的短期方法通常不会带来最佳解决方案,并且在处理变化的变量时被证明是不灵活的,这限制了他们的持续生存能力。

该团队的方法使用蒙特卡罗树搜索( MCTS )方法,将经典的树搜索实现与强化学习的机器学习原理结合起来。该方法解决了现有的启发式限制,提高了整体调度模型的效率,提高了效率。

通过与导师合作,团队 AI Scheduler 学会了使用 NVIDIA Nsight 系统 来识别瓶颈,并使用 GPU 来并行化代码。活动结束时,团队能够加快 MCTS 算法的模拟步骤。这将调度时间从 6 小时减少到 30 分钟,并使总体调度效率提高了 11.3 倍。

工研院 CITC 的曾正苏博士和黄浩哲博士说:“在本次黑客大会上证明了使用 GPU 加速我们的模型的可行性之后,下一步是将其应用到我们的商业模型中,供工业使用。”。

使用 GPU 了解地球科学的全局

台湾位于欧亚大陆和菲律宾海板块之间,是世界上构造最活跃的地区之一,也是全球地震研究的重要基地。地质研究和构造活动的时间尺度通常以数千年或数万年为单位。这需要使用大量数据和足够的计算能力来进行有效分析。

由 中央研究院地球研究所 的谭博士领导的 IES 地球动力学团队来到 GPU Hackathon 加速他们的数值地球动力学模型。它名为 DynEarthSol ,模拟地幔对流、俯冲、造山和构造。此前,该团队通过将数据分块并限制计算过程以适应 CPU 有限的计算能力来减少计算和步骤的数量,从而处理大量数据。这使得很难看到研究的全貌。

http://news.vvfanli.com/wp-content/uploads/2022/04/20220411065146-6253d00275cd8.png

图 2 俯冲带的动画模拟。

在黑客竞赛的过程中,团队使用了一种新的数据输入方法,利用 GPU 计算数据和多个步骤。使用 OpenACC , IES 地球动力学团队能够将 80% 的模型移植到 GPU ,并实现了 13.6 倍的加速。

“这是我第二次参加 GPU 黑客竞赛,我肯定会参加下一次,”中央研究院国际研究所研究员谭恩恩教授说。“我们已经学会了采用 GPU 的适当方法,用户友好的分析工具为我们提供了一个优化模型的好主意。”

该团队将继续致力于移植其模型的剩余 20% 。他们期待使用 GPU 运行更多高分辨率模型,以更深入地了解台湾的编队活动。

用于应急规划和响应的快速洪水评估

洪水是最具破坏性的自然灾害之一。每年造成大量人员伤亡和经济损失, 全世界平均有 2100 万人受洪水影响 ,由于气候变化和其他因素,预计人数还会增加。预防和减轻这些危害是一项关键工作。

来自 国立杨桥大学( NYCU ) 的 THINKLAB 团队正在开发一种模型,该模型可以为紧急情况提供快速准确的结果,同时保持操作的简单性。所提出的 混合淹没模型( HIM ) 通过元胞自动机方法求解零惯性方程,并与亚网格级插值策略配合使用,以生成更高分辨率的结果。

http://news.vvfanli.com/wp-content/uploads/2022/04/20220411065147-6253d003657ab.gif

图 3 HIM 产生的洪水范围示例。

使用 Python 和 NumPy 库开发的 HIM 模型在 hackathon 开始时没有并行或 GPU 计算。在活动期间, THINKLAB 团队使用 CuPy 为了使他们的代码在 GPU 上并行运行,然后重点将用户定义的 CUDA 内核应用于参数。结果是 672 倍加速,计算时间从 2 周缩短到大约 30 分钟。

THINKLAB 团队成员 Obaja Wijaya 说:“我们在这次活动中学到了很多技巧,并向其他人强烈推荐这些活动。”。“NVIDIA 是这一领域的专家,通过与他们的导师合作,我们学会了如何使用 GPU 编程优化模型/代码。”

关于作者

Izumi Barker 是 NVIDIA GPU 黑客竞赛和训练营的项目经理,也是 OpenACC Standard 的公关总监。组织。在这些角色之前,她在凤凰城大学、 CeCon 集团、囊性纤维化基金会和 LLP 安永等高等教育、生命科学、技术和出版行业的公司举办了战略营销和传播职位。

审核编辑:郭婷

<!–

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: admin

为您推荐

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦

智慧路灯照明系统的应用为智慧城市的发展建设添砖加瓦-夜间的路灯不仅照亮了黑暗的街道,而且照亮了回家的道路。从街上望去,闪烁的路灯发出暖光,指引着我们家的方向。城市里的路灯就像“守护者”,给长途旅行回来的游客带来了极大的安全感。 当今,路灯智能控制时代的到来,极大地促进了传统路灯的人工机械化运行。虽然对此感到兴奋,但我们不禁要问:随着路灯智能控制的早期到来,除了改善路灯的运行模式,还能带来什么? 为城市交通提供安全保障 城市公共照明系统中的智能路灯在每个路

晶振在五种不同行业中的应用说明

晶振在五种不同行业中的应用说明-晶振在五种不同行业的应用-由TST嘉硕代理KOYU光与电子

几种不同的物联网控制APP模式

本文就简单介绍当前几种物联网控制APP模式,让大家了解几种不同的技术路线。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

苹果稳坐全球可穿戴设备数量首位,占据日本市场超7成份额

苹果稳坐全球可穿戴设备数量首位,占据日本市场超7成份额

苹果公司占据2021年日本第四季度可穿戴设备71.5%份额,占据全球可穿戴设备市场34.9%份额。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

如何用GPUDirect存储器如何缓解CPU I / O瓶颈

除了使用 GPUs 而不是 CPU 加快计算的好处外,一旦整个数据处理管道转移到 GPU 执行,直接存储就起到了一个力倍增器的作用。这一点变得尤为重要,因为数据集大小不再适合系统内存,而且 GPUs 的数据 I / O 增长成为处理时间的瓶颈。当人工智能和数据科学继续重新定义可能的艺术时,启用直接路径可以减少甚至完全缓解这个瓶颈。\” />

<meta http-equiv=X-UA-Compatible content=\"IE=edge,chrome=1

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部